NKR 1 ADHD PICO 4 PC træning versus Kontrol

Characteristics of studies

Characteristics of included studies

Azami 2016

| Methods | Study design: Randomized controlled trial
Study grouping: Parallel group |
|---------|--|
| Participants | Baseline Characteristics
Intervention:
- Age in years, mean (SD): not reported
- Male gender (%): 100
- Proportion using ADHD medication (%): 100
Placebo:
- Age in years, mean (SD): not reported
- Male gender (%): 100
- Proportion using ADHD medication (%): 100
Overall:
- Age in years, mean (SD): 7-12
- Male gender (%): 100
- Proportion using ADHD medication (%): 100
Included criteria: Inclusion criteria were: (1) confirmed ADHD diagnosis, (2) enrollment in grades 2 through 5, and (3) IQ ≥ 85.
Excluded criteria: Exclusion criteria were: (1) severe comorbid disorder (ODD, ASD, or depression), (2) history of seizures, (3) IQ ≤ 85, (4) disability that would affect ability to use a computer, (5) illnesses that required immediate treatment. |
| Interventions | Intervention Characteristics
Intervention:
- Description: CACR subjects completed 20 ninety-minute sessions of computerized training of multiple executive functions in a 2-month period, administered individually by trained clinicians. Training sessions involved practicing tasks specially designed to train selective, sustained and divided attention, interference inhibition (interference control), short-term memory, planning, and processing speed. The difficulty levels of tasks were automatically adjusted to match children’s progressive skills. In each session, CACR subjects completed almost 90 trials of cognitive training tasks.
- Length of intervention (weeks): 8
- No. of sessions per week: 20 SESSIONS OF 90 MIN IN TOTAL
Placebo:
- Description: Similarly, PCACR subjects completed 20 ninety-minute sessions of computerized training of multiple cognitive tasks over a 2-month period, individually administered by the trained clinicians. The brain training software included: (1) the Persian software of working memory training (Khodadadi et al., 2009) and (2) a commercially available brain training software called “The Amazing Brain Train”. These programs allowed clinicians to actively fix the difficulty levels of the tasks.
- Length of intervention (weeks): 8
- No. of sessions per week: 20 SESSIONS OF 90 MIN IN TOTAL |
| Outcomes | ADHD kernesymptomer, forældrebedømt, mean SD, EoT
- Outcome type: Continuous
- Reporting: Fully reported
- Scale: SNAP-IV
- Data value: Endpoint |
| Identification | Sponsorship source: This work received no external funding
Country: Iran
Authors name: Morteza Nazifi
Institution: Department of Psychology, University of Bojnord
Email: Nazifi90@yahoo.com
Address: Department of Psychology, University of Bojnord, Bojnord, 9453155111, Iran. |
| Notes | |

Risk of bias table

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Judgement Comments: In Appendix S1: Used online randomization software, to produce random sets of numbers in the four matched subgroups. The subgroups were formed before randomization.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Judgement Comment: In Appendix S1: Used online randomization software, to produce random sets of numbers in the four matched subgroups. The subgroups were formed before randomization.</td>
</tr>
</tbody>
</table>
Blinding of participants and personnel (performance bias) | High risk | Judgement Comment: In Appendix S1: The study was not double-blinded, as clinicians were aware of group assignments. Participants, also, were aware that there were three types of treatments in the current study: two types of cognitive training, and stimulant medication intervention.

Blinding of outcome assessment (detection bias) | High risk | Judgement Comment: In Appendix S1: The study was not double-blinded, as clinicians were aware of group assignments.

Incomplete outcome data (attrition bias) | Low risk | Comments: No missing outcome data at EoT

Selective reporting (reporting bias) | Low risk | Quote: “registered in ClinicalTrials.gov (identifier: NCT01675804).”

Other bias | Low risk | Quote: “This work received no external funding. All authors have substantially contributed to this research. The authors have declared that they have no competing or potential conflicts of interest.”

Bigorra 2016

Methods

Study design: Randomized controlled trial

Study grouping: Parallel group

Participants

Baseline Characteristics

Intervention
- Age in years, mean (SD): 8.79 (1.75)
- Male gender (%): 40
- Proportion using ADHD medication (%): 0

Placebo
- Age in years, mean (SD): 9.04 (1.68)
- Male gender (%): 50
- Proportion using ADHD medication (%): 0

Overall
- Age in years, mean (SD): not reported
- Male gender (%): 45
- Proportion using ADHD medication (%): 0

Included criteria: Patient recruitment was carried out from cases that con-sulted at the Child and Adolescent Psychiatric Unit from the University Hospital Mútua Terrassa from June 2010 to March 2012. A total of 66 outpatients participated in the study. All were diagnosed of combined-type ADHD according to the DSM-IV-TR criteria. Comorbidity with other disruptive behaviour disorders was accepted (i.e. oppositional defiant disorder or conduct disorder) according to the DSM-IV-TR criteria. All diagnoses were confirmed using the semi-structured Kiddie-Schedule for Affective Disorders and Schizophrenia, Present and Lifetime Version (K-SADS-PL) [37] interview that was administered to participants’ parents. Other inclusion criteria included age between 7 and 12 years; T scores on the Conners ADHD index for parents and teachers >70 at the time of diagnosis; no previous psychological or pharmacological treatment for ADHD; and access to a personal computer with Internet connection

Excluded criteria: Exclusion criteria included IQ80; comor-bidity with autism spectrum disorder, psychosis, affective or anxiety disorder, consumption of toxic substances, or learning disorder; history of traumatic brain injury in the last 2 years; and perceptual-motor alterations that would preclude the use of a computer. Participants whose edueca-tional or socio-economic context would make it unlikely for families to comply with the study requirements and fol-low the treatment procedure (subjects whose families did not speak Spanish or were monitored by social services due to suspected abuse/neglect) were also excluded from the study. Furthermore, children who participated in fewer than 20 training sessions were excluded from the posterior data analysis, as were those who initiated other pharmacological or psychological treatments during study participation

Pretreatment: None

Interventions

Intervention Characteristics

Intervention
- Description: The experimental group underwent CWMT RoboMemo® (2005, Cogmed Cognitive Medical Systems AB, Stock-holm, Sweden), which consisted of visuospatial, auditory, and location memory and tracking of moving visual objects as WM tasks. Each training session included 90 trials and had a duration of 30-45min. Participants attended 5 ses-sions per week over a 5-week period for a total of 25 ses-sions. The level of difficulty was automatically adjusted to the performance of each participant, thus generating a pro-longed cognitive demand that exceeded existing capacity limits to keep the task challenging throughout the training phase and thereby maximize WM performance gains [38]. This is based on the fact that cognitive plasticity is driven by a prolonged mismatch between functional organismic supplies and environmental demands [39].
- Length of intervention (weeks): 5
- No. of sessions per week: 5

Placebo
- Description: The control group (non-adaptive training) engaged in the MegaMemo (2005, Cogmed Cognitive Medical Sys-tems AB, Stockholm, Sweden), which consists of the same WM tasks as CWMT RoboMemo® but without the adjust-ment for difficulty, i.e. they performed simpler tasks. The remaining characteristics were the same for both groups, and both conditions were translated into Spanish, training was conducted in the children’s home, under the supervision of a family member. The response to each session, training time and number of sessions completed were recorded on an Internet database. A member of the research team (coach) who was the same for the two experimental conditions examined this information on a weekly basis and contacted each family via telephone to ensure adherence to the rules and resolve queries. Training included feedback on performance with respect to each task and a reinforcement game at the end of each session. Fami-lies were advised to add an additional reward at the end of each session. After randomization, children were given the corresponding training programme (CWMT RoboMemo® non-adaptive training) on a CD, which contained no more than 25 training sessions.
Outcomes

ADHD kernesymptomer, forældrebedømt, mean SD, EoT
- **Outcome type:** ContinuousOutcome
- **Scale:** ADHD symptoms index

ADHD kernesymptomer, lærerbedømt, mean SD, EoT
- **Outcome type:** ContinuousOutcome
- **Scale:** ADHD symptoms index

Adfærdsforstyrrelser, forældrebedømt, mean SD, EoT
- **Outcome type:** ContinuousOutcome
- **Scale:** Behaviour symptom index

Adfærdsforstyrrelser, lærerbedømt, mean SD, EoT
- **Outcome type:** ContinuousOutcome
- **Scale:** Behaviour symptom index

Identification

Sponsorship source: This study has received financial support through the Award 22è PREMI FER-RAN SALSAS I ROIG—Salut Mental i Comunitat granted by the City Council of Rubi (Spain) in 2010.

Country: Spain

Setting: Home

Authors name: Aitana Bigorra

Institution: Programa de Doctorat de Psiquiatria, Universitat Autònoma de Barcelona, Barcelona, Spain

Email: abigorra@mutuaterrassa.es

Address:

Notes

Risk of bias table

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Quote: Participants were enrolled in the study and were randomly assigned to one of the intervention groups by a member of the research team, using a computer-generated sequence. The study group allocation was blinded to child, their family, their teachers and the professionals who performed the cognitive assessments. In addition, participants, families and teachers were unaware of the difference between the experimental and the control training (i.e. the automatic adjustment of difficulty). The double-blind condition was maintained in all evaluations conducted through-out the study.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Quote: "Participants were enrolled in the study and were randomly assigned to one of the intervention groups by a member of the research team, using a computer-generated sequence."</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Quote: "The study group allocation was blinded to children, their family, their teachers and the professionals who performed the cognitive assessments. In addition, participants, families and teachers were unaware of the difference between the experimental and the control training (i.e. the automatic adjustment of difficulty). The double-blind condition was maintained in all evaluations conducted through-out the study."</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Quote: "The study group allocation was blinded to children, their family, their teachers and the professionals who performed the cognitive assessments. In addition, participants, families and teachers were unaware of the difference between the experimental and the control training (i.e. the automatic adjustment of difficulty). The double-blind condition was maintained in all evaluations conducted throughout the study."</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>Quote: No significant differences were found between the experimental and control groups with respect to the proportion of dropouts during any study period (Fisher's exact test: from T0 to T1: (\chi^2 = 3.65, df = 1, p = 0.08); from T1 to T2: (\chi^2 = 0.18, df = 1, p = 0.61); from T0 to T2: (\chi^2 = 2.41, df = 1, p = 0.12)). The last participant excluded from the data analysis after participation in the study was excluded due to a diagnosis of pervasive developmental disorder not otherwise specified. Missing values refer to questionnaires that were not completed (T0: 1 WFIRS-P, 1 SDQ-teacher; T1: 1 BRIEF-teacher; T2: 1 BRIEF-parent, 1 SDQ-parent, 4 BRIEF-teacher, 2 Conners-teacher, 5 TRF).</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Unclear risk</td>
<td>Quote: "This study is registered as ISRCTN00767728 (www.controlled-trials.com)." Judgement Comment: Retrospectively registered in clinical trials - selective outcome reporting unclear</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>Quote: "Acknowledgments Maribel Ahuir, Llanos Artigao, Clara Barba, Andrea Bracho, Bernat Carreras, Noemi Carrillo, Marta Doñate, Cristina Enero, Alejandra Escura, Adrián Gaitán, Javi Sanchez, Pablo Vidal-Ribas, María Teresa Ordeig, Sylvie-Astrik Torossian. This study has received financial support through the Award 22è PREMI FER-RAN SALSAS I ROIG—Salut Mental i Comunitat granted by the City Council of Rubi (Spain) in 2010."</td>
</tr>
</tbody>
</table>
Bikic 2017

Methods

Study design: Randomized controlled trial
Study grouping: Parallel group

Participants

Baseline Characteristics

Overall
- Age in years, mean (SD): 14-17
- Male gender (%): 76.5
- Proportion using ADHD medication (%): 83

Included criteria: Participants who fulfilled the following criteria were included: (1) a clinical diagnosis of hyperkinetic disorder (F90.0, corresponding to ADHD-combined type) (47); (2) age between 14-17 years; and (3) IQ>80.

Excluded criteria: The exclusion criteria were: (1) pharmacological treatment other than methylphenidate, dexamphetamine, and/or atomoxetine; (2) comorbid conduct disorder, autism spectrum disorders, or major depression; (3) history of head trauma or verified neurological disease; (4) motor or perceptual disabilities which prevented the use of a computer; (5) medical illness that required treatment; and (6) no access to a computer and internet at home.

Pretreatment: RVP probability of hit (attention)

Interventions

Intervention Characteristics

Description: SBT exercises

The intervention group used a selection of beta-exercises from the Scientific Brain Training (SBT) program (55), which is a commercially available program for adults. Out of nine exercises available at that time, we selected six: Entangled Figures, Shapes and Colours, Under Pressure, Displaced Characters, Heraldry, and Objects Where are You? The games had different difficulty levels, and adjusted automatically to the user's performance. Promotion to the next level depended on 90% accuracy three times in a row at one level. If the accuracy was under 60% twice in a row, the user was automatically returned to the previous level. Participants played two games each week in a rotating manner, independently of participants' performance each week.

Description: Control intervention: The control group played a common version of the game Tetris. Tetriminos are game pieces composed of four-square blocks. Tetriminos fall down randomly into the playing field, and the aim is to manipulate the function of the blocks by moving each one sideways and rotating by 90-degree units. The aim is to create a horizontal line of 10 blocks without gaps. When such a line is created, it disappears, and any block above the deleted line falls down. At each subsequent level, the Tetriminos fall faster, and the game ends when the stack of Tetriminos reaches the top of the playing field. The game was not adaptive in terms of fact that participants had to start on the lowest level each day.

Placebo

- Length of intervention (weeks): 7
- No. of sessions per week: 5

Outcome type: Continuous

Scale: ADHD-RS total

Outcomes

ADHD kernesymptomer, forældrebedømt, mean SD, EoT

Outcome type: Continuous

Scale: ADHD-RS total

ADHD kernesymptomer, lærerbedømt, mean SD, EoT

Outcome type: Continuous

Scale: ADHD-RS total

Identification

Sponsorship source: This trial has been supported by a grant from the Region of Southern Denmark Psychiatry Research foundation (nr. 7/6/2010).

Country: Denmark

Setting: Psychiatry, University

Authors name: Aida Bikic

Institution: Department for Child and Adolescent Psychiatry

Email: aida.bikic@rsyd.dk

Address: Kresten Phillipsens Vej 15, 6200 Aabenraa, Denmark

Notes

Risk of bias table

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Quote: A clinician, unrelated to the trial and blinded to baseline data and participant ID, performed the randomization by selecting the numbers assigned to each participant from an envelope.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Quote: “CANTAB. A clinician, unrelated to the trial and blinded to baseline data and participant ID, performed the randomization by selecting the numbers assigned to each participant from an envelope.”</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>No comments</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Quote: “This was a randomized, double-blinded trial.” Judgement Comment: Teachers will most likely not know if adolescents are in the active or sham group - may be unbiased</td>
</tr>
</tbody>
</table>
Incomplete outcome data (attrition bias) | Low risk | Quote: The participant who dropped out of the trial was excluded from the statistical analysis.

Selective reporting (reporting bias) | Unclear risk | Judgement Comment: No reference to study protocol.

Other bias | Low risk | Quote: “Disclosure statement Torben Østergaard Christensen holds the license for the Danish version of Scientific Brain Training (SBT), now referred to as Happy Neuron Pro. The other authors report no conflicts of interest. Funding This trial has been supported by a grant from the Region of Southern Denmark Psychiatry Research foundation (nr. 7/6/2010).”

Chacko 2014

Methods

Study design: Randomized controlled trial

Study grouping: Parallel group

Participants

Baseline Characteristics

Intervention
- Age in years, mean (SD): 8.4 (1.4)
- Male gender (%): 81
- Proportion using ADHD medication (%): 27

Placebo
- Age in years, mean (SD): 8.4 (1.3)
- Male gender (%): 73
- Proportion using ADHD medication (%): 32

Overall
- Age in years, mean (SD): not reported
- Male gender (%): 78
- Proportion using ADHD medication (%): 29

Included criteria: Inclusion criteria: included: 1) children between the ages of 7–11 years; 2) a diagnosis of ADHD through consensus diagnosis based on parent and teacher ratings on the Disruptive Behavior Disorder Rating Scales (DBD; Pelham, Gnangy, Greenslade, Milich, 1992) and impairment using the Impairment Rating Scale (Fabiano et al., 2006); and a semi-structured interview with the parent using the Kiddie-SADS (Kaufman et al., 1997); 3) fluency in English (parent and child); and, 4) internet access at home.

Excluded criteria: Children were excluded if 1) there was evidence of a pervasive developmental disorder based on previous diagnosis and/or elevated scores on the Child Autism Rating Scale (Schopler, Reichler, Renner, 1988) rated by the evaluator at intake, or psychosis; 2) the child or parent presented with an emergency psychiatric need that required immediate services (e.g., suicidal or homicidal intent), and; 3) if the child had an estimated Full Scale IQ below 80 based on two subtests of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler et al. 1999).

Interventions

Intervention Characteristics

Intervention
- Description: CWMT Active—CWMT Active is a computerized training program that targets both the storage and storage plus processing/manipulation components of verbal and nonverbal working memory through training which takes place in approximately 30–45 minute increments over five days per week (25 training-days total). CWMT Active trials are titrated to the capacity of the individual using an adaptive staircase design that adjusts the difficulty of the program on a trial-by-trial basis. Each individual’s training is supervised by a training aide (typically a parent or guardian) and a certified CWMT coach, who is able to track closely (via online access) each individual’s performance and provide support to the family through weekly coaching interactions (by phone).
- Length of intervention (weeks): 5
- No. of sessions per week: 5

Placebo
- Description: CWMT Placebo—The CWMT Placebo condition included a low-level (placebo) working memory training program that was identical to CWMT Active with respect to the types of training games utilized and the number of training trials per session (i.e., 90 trials). Unlike the active condition, difficulty level was not scaffolded according to each user’s performance parameters in the placebo condition. As with CWMT Active, parents in the CWMT Placebo served as training aides, and each family was supported by a coach who utilized comparable support procedures.
- Length of intervention (weeks): 5
- No. of sessions per week: 5

Outcomes

ADHD kernesymptomer, forældrebedømt, mean SD, EoT
- Outcome type: Continuous Outcome
- Scale: Disruptive Behavior Disorders Rating Scale - inattention subscale

ADHD kernesymptomer, lærerbedømt, mean SD, EoT
- Outcome type: Continuous Outcome
- Scale: Disruptive Behavior Disorders Rating Scale - inattention subscale

Identification

Sponsorship source: Funding for this project was provided through Award Number R34MH088845 from the National Institute of Mental Health.

Country: USA

Setting:

Comments:

Authors name: Anil Chacko

Institution: Queens College, City University of New York

Email: chacko@qc.cuny.edu

Address: 65-30 Kissena Blvd., Flushing NY 11367

Notes
Methods

Study design: Randomized controlled trial
Study grouping: Parallel group

Participants

Baseline Characteristics
Intervention
- Age in years, mean (SD): 10.6 (1.4)
- Male gender (%): 81
- Proportion using ADHD medication (%): 65

Placebo
- Age in years, mean (SD): 10.5 (1.3)
- Male gender (%): 80
- Proportion using ADHD medication (%): 73

Overall
- Age in years, mean (SD): not reported
- Male gender (%): 80
- Proportion using ADHD medication (%): 72

Included criteria: Eligibility criteria. Eligible participants were all children aged 8 to 12 years with (a) a prior DSM-IV-TR [52] diagnosis of ADHD combined-type and absence of any autism spectrum disorder according to a child psychologist or psychiatrist; (b) a score within the clinical range (99th to 100th percentile) on the ADHD scales of both the parent and teacher version of the Disruptive Behavior Disorder Rating Scale (DBDRS [53]; Dutch translation: [54]); (c) meeting criteria for ADHD combined-type on the Diagnostic Interview Schedule for Children, parent version (PDISC-IV [55]). The PDISC-IV is a structured diagnostic interview based on the DSM-IV, with adequate psychometric properties. (d) Absence of conduct disorder (CD) based on the CD sections of the PDISC-IV. (e) An IQ score of 80 or above established by the short version of the Dutch Wechsler Intelligence Scale for Children (WISC-III; [56]). Two subtests, Vocabulary and Block Design, were administered to estimate Full Scale IQ (FSIQ). This composite score has satisfactory reliability and correlates highly with FSIQ ([57], f) absence of any neurological disorder, sensory (color blindness, vision) or motor impairments stated by the parents, (g) not taking any medication other than Methylphenidate or Dextro-amphetamine. Participants discontinued their Methylphenidate at least 24 hours before each test-session, allowing a complete wash-out [58]. Participants taking Dextroamphetamine discontinued medication 48 hours before each test-session [59]. Finally, (h) parents had to agree to keep the dose of ADHD medication stable between the intake and the 3 months follow-up session, and had to consent not to initiate or participate in other psychosocial treatments.

Excluded criteria: not reported
Pretreatment: None

Interventions

Intervention Characteristics
Intervention
- Description: Full-active condition. In this condition, WM, inhibition and cognitive flexibility were all in training-mode. Training-mode entailed that, after each block of training tasks, the difficulty level of the training task was automatically adjusted to the child’s level of performance. Furthermore, in training-mode (a) the WM task [60] consisted of five training levels: the first level targeted visuospatial short-term memory (STM) only, whereas the other four levels targeted combinations of visuospatial STM, updating and manipulation of information (i.e., these four levels targeted both STM and the central executive). Each level was trained for 5 of the 25 sessions. The difficulty level was increased by increasing the amount of information that had to be remembered, updated and manipulated, (b) the inhibition task [81] was designed to decrease the time needed to inhibit a prepotent response (comparable with the
stop signal reaction time measured by the STOP task [62]). On most trials the child had to respond to a go-stimulus by pressing left or right within a specific time-frame (a green colored response window between 550-850 ms; see Fig 1). This created a prepotent response tendency. However, on 25% of the trials, somewhere after the go-stimulus and before the middle of the response window, a stop-signal was presented (a tone and a visual cue) and the child had to inhibit the prepotent response (stop-trials). The difficulty level was increased by shortening the time allowed to inhibit this response, (c) the cognitive-flexibility task [61] was designed to decrease the time a child needs to adapt his/her behavior when task-rules change (i.e. switch cost). Specifically, the child had to sort objects with different shapes and colors (e.g. blue or red colored plungers and wheels) to either the left or the right according to a rule. The rule was either to sort according to shape or to sort according to color. In 25% of the trials the rule switched (switch-trials). The difficulty level was increased by shortening the time allowed to switch between the two rules (for a more detailed description of the three training tasks see [31]).

- **Length of intervention (weeks):** 5
- **No. of sessions per week:** 5

Placebo

- **Description:** Placebo condition. In this condition WM, inhibition and cognitive-flexibility were all in placebo-mode. In placebo-mode the inhibition task and the cognitive-flexibility task were presented the same way as in training-mode except that the stop-trials and switch-trials were replaced by go-trials and non-switch trials (i.e., no stop-trials and switch-trials were presented) and the difficulty level was not adjusted.

- **Length of intervention (weeks):** 5
- **No. of sessions per week:** 5

Outcomes

- **ADHD kernesymptomer, forældrebedømt, mean SD, EoT**
 - **Outcome type:** Continuous Outcome
 - **Scale:** Disruptive Behavior Disorders Rating Scale - inattention subscale

- **ADHD kernesymptomer, lærerbedømt, mean SD, EoT**
 - **Outcome type:** Continuous Outcome
 - **Scale:** Disruptive Behavior Disorders Rating Scale - inattention subscale

- **Livskvalitet**
 - **Outcome type:** Continuous Outcome
 - **Scale:** PEDSQoL total BARN

- **Adfærdsforstyrrelser, forældrebedømt, mean SD, EoT**
 - **Outcome type:** Continuous Outcome
 - **Scale:** Disruptive Behavior Disorders Rating Scale - ODD subscale

- **Adfærdsforstyrrelser, lærerbedømt, mean SD, EoT**
 - **Outcome type:** Continuous Outcome
 - **Scale:** Disruptive Behavior Disorders Rating Scale - ODD subscale

Identification

- **Sponsorship source:** Funding: The authors have no support or funding for this report.
- **Country:** Netherlands
- **Setting:** mental-healthcare centers/home-based
- **Authors name:** Sebastiaan Dovis
- **Institution:** 1Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands, 2Addiction, Development, and Psychopathology (Adapt) Lab, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands, 3Cognitive Science Center A
- **Email:** S.Dovis@uva.nl
- **Address:**

Notes

Risk of bias table

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
</table>
| Random sequence generation | Low risk | Quote: "If inclusion criteria were met, parent and child were invited to the pre-test session and the startup session, and were independently allocated to one of the three treatment conditions using the process of randomization by minimization [82] on the basis of age, gender, IQ, medication-use (yes/no), and parent- and teacher-rated inattention and hyperactivity/impulsivity symptoms (using the 6-months DBDRS)."
| Allocation concealment | Low risk | Quote: "Once a research assistant completed a startup session with a particular family, he/she could not test or have further contact with that family or the teacher (to preserve blinding). During the 5-week, home-based training, a coach (a research assistant blind to the treatment condition) made weekly calls (of about 15 minutes; using a standardized telephone protocol) to the participating families to monitor progress, motivation and compliance, and to solve technical and game-related problems. Parents and children were explicitly instructed not to discuss the content of the training tasks with the coach. If a coach did receive information revealing the treatment condition, he/she was replaced and could no longer have contact with the family or the teacher."
| Blinding of participants and personnel | Low risk | Quote: "This was a multicenter (14 sites), double-blind, placebo-controlled, multi-arm parallel-group study conducted in the Netherlands" Judgement Comment: See prior comment - blinding was kept throughout, and it is plausible that parents and teachers would not know which group was active or placebo. |
Blinding of outcome assessment (detection bias) | Low risk | Quote: “This was a multicenter (14 sites), double-blind, placebo-controlled, multi-arm parallel-group study conducted in the Netherlands”

Incomplete outcome data (attrition bias) | Low risk | Comment: Missing outcome data was balanced across intervention groups

Selective reporting (reporting bias) | Low risk | Quote: “This was a multicenter (14 sites), double-blind, placebo-controlled, multi-arm parallel-group study conducted in the Netherlands (trial register: http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2728; registry name: improving executive functioning in children with ADHD: training executive functions within the context of a computer game; registry number: NTR2728). No important changes to methods were made after trial commencement (the trial started April 2011 and ended January 2013). The protocol for this trial and CONSORT checklist are available as S1 Protocol and S1 CONSORT Checklist.”

Other bias | Low risk | Quote: “Funding: The authors have no support or funding to report. Competing Interests: P.J.M.P. is member of Stichting Gaming & Training, a nonprofit organization that facilitates the development and implementation of “Braingame Brian.”; S.v.d.O. has been a paid consultant for Janssen Pharmaceuticals with regard to “Healseeker,” a serious game for cognitive function”

Johnstone 2010

Methods

- **Study design:** Randomized controlled trial
- **Study grouping:** Parallel group

Participants

- **Baseline Characteristics**
 - **Intervention 1**
 - Age in years, mean (SD): 10.7 (1.5)
 - Male gender (%): 87
 - Proportion using ADHD medication (%): 47
 - **Control**
 - Age in years, mean (SD): 10.7 (1.3)
 - Male gender (%): 86
 - Proportion using ADHD medication (%): 79
 - **Overall**
 - Age in years, mean (SD): not reported
 - Male gender (%): not reported
 - Proportion using ADHD medication (%): not reported

- **Included criteria:** All participants were diagnosed with ADHD of the combined type by a psychologist in accordance to DSM-IV
- **Excluded criteria:** Participants with clinical significant comorbid disorder were excluded. Participants were excluded if they were known to suffer from epileptic seizures, serious head injuries, periods of unconsciousness or co-morbid learning, behavioral and psychiatric disorders

Interventions

- **Intervention Characteristics**
 - **Intervention 1**
 - Description: High intensity of concurrent computer-based working memory and inhibition training
 - Length of intervention (weeks): 5
 - No. of sessions per week: 5
 - **Control**
 - Description: Low intensity of concurrent computer-based working memory and inhibition training
 - Length of intervention (weeks): 5
 - No. of sessions per week: 5

Outcomes

- **ADHD core symptom, parent rating SE**
 - **Outcome type:** Continuous Outcome
 - **Reporting:** Partially reported
 - **Scale:** Connors rating scale (total symptom score)
 - **Unit of measure:** Frequency
 - **Direction:** Lower is better
 - **Data value:** Endpoint
 - **Notes:** Data extracted from a graph.

Identification

- **Sponsorship source:** The research was supported by a small internal grant from the University of Wollongong.
- **Country:** Australia
- **Setting:**
- **Comments:**
 - **Authors name:** Stuart J. Johnstone
 - **Institution:** Brain and behaviour Research Institute and School of Psychology
 - **Email:** sjohnsto@uow.edu.au
 - **Address:** Wollongong, NSW 2522, Australia

Notes

- **Risk of bias table**
Bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Comment: Random allocation was handled by SR (Steven Roodenrys)</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Judgement Comment: Random allocation was handled by SR, with all the other researchers, the participants and their parents being blinded. Unclear how this is done unclear if SR could foresee allocation?</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Judgement Comment: Random allocation was handled by SR, with all the other researchers, the participants and their parents being blinded "... with all other researchers, the participants and their parents being blind to condition membership"</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Judgement Comment: Random allocation was handled by SR, with all the other researchers, the participants and their parents being blinded "... with all other researchers, the participants and their parents being blind to condition membership"</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>High risk</td>
<td>Comment: 20 were randomly allocated - and 18 completed training “4 removed from low intensity and three in high...” - No itt. Unclear how many was withdrawn from the analysis</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>Judgement Comment: The research protocol was approved by ethics committee.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>No comments</td>
</tr>
</tbody>
</table>

Johnstone 2012

Methods

| Study design: Randomized controlled trial |
| Study grouping: Parallel group |

Participants

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention 1</td>
</tr>
<tr>
<td>Age in years, mean (SD): 10.0 (2.1)</td>
</tr>
<tr>
<td>Male gender (%): 86</td>
</tr>
<tr>
<td>Proportion using ADHD medication (%): not reported</td>
</tr>
<tr>
<td>Intervention 2</td>
</tr>
<tr>
<td>Age in years, mean (SD): 9.4 (2.2)</td>
</tr>
<tr>
<td>Male gender (%): 89</td>
</tr>
<tr>
<td>Proportion using ADHD medication (%): not reported</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Age in years, mean (SD): 9.9 (2.3)</td>
</tr>
<tr>
<td>Male gender (%): 95</td>
</tr>
<tr>
<td>Proportion using ADHD medication (%): not reported</td>
</tr>
<tr>
<td>Overall</td>
</tr>
<tr>
<td>Age in years, mean (SD): not reported</td>
</tr>
<tr>
<td>Male gender (%): 90</td>
</tr>
<tr>
<td>Proportion using ADHD medication (%): 87</td>
</tr>
</tbody>
</table>

Included criteria: All participants were required to be free of hearing or vision problems, have not previously experienced epileptic seizures, serious head injuries or periods of unconsciousness and show a normal-range IQ and spelling ability.

ADHD participants required a professional diagnosis of AD/HD (any subtype)

Excluded criteria: Participants were excluded if they previously have shown evidence of psychiatric, behavioural or learning problems, as reported by their parents.

Pretreatment: Of the 60 children included, 8 were not on any medication, 26 were taking Concerta, 21 taking Ritalin, 3 taking dexamphetamine and 3 taking Strattera

Interventions

<table>
<thead>
<tr>
<th>Intervention Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention 1</td>
</tr>
<tr>
<td>Description: Working memory and inhibitory control without attention monitoring</td>
</tr>
<tr>
<td>Length of intervention (weeks): 5</td>
</tr>
<tr>
<td>No. of sessions per week: Unclear</td>
</tr>
<tr>
<td>Intervention 2</td>
</tr>
<tr>
<td>Description: Software (focusing on working memory and inhibitory control) with attention monitoring</td>
</tr>
<tr>
<td>Length of intervention (weeks): 5</td>
</tr>
<tr>
<td>No. of sessions per week: Unclear</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Description: waiting list</td>
</tr>
<tr>
<td>Length of intervention (weeks): 5</td>
</tr>
<tr>
<td>No. of sessions per week: None</td>
</tr>
</tbody>
</table>

Outcomes

ADHD core symptoms, parent rating, SD

| Outcome type: ContinuousOutcome |
| Reporting: Partially reported |
| Scale: Behavioral rating score (18-item) |
| Direction: Lower is better |
| Data value: Change from baseline |
| Notes: Data extracted from a graph. Type of variance was not mentioned (we assumed it was SD). |
Identification

Sponsorship source: The research was supported in part by NeuroCog solutions Pty Ltd (Australia)
Country: Australia
Setting: not stated
Comments: none
Authors name: Stuart J. Johnstone
Institution: School of Psychology, University of Wollongong
Email: sjohnsto@uow.edu.au
Address: Wollongong, NSW 2522, Australia

Notes

Risk of bias table

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Participants were randomly assigned to one of the three conditions. It is unclear how this was done</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Judgement Comment: Nothing stated</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>Judgement Comment: Participants and their parents were given a full explanation of the procedure and understood that they may be allocated to a waitlist condition with an opportunity to participate in training after the waitlist period. Nothing was mentioned as to how blinding was obtained.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>High risk</td>
<td>Judgement Comment: Participants and their parents were given a full explanation of the procedure and understood that they may be allocated to a waitlist condition with an opportunity to participate in training after the waitlist period. Nothing was mentioned as to how blinding was obtained.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>Comment: Only data was obtained from the children completing the 25 sessions. 151 completed the initial training sessions with 23 participants not completing more than 15 of the requested 25 trials.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>No comments</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>No comments</td>
</tr>
</tbody>
</table>

Klingberg 2005

Methods

Study design: Randomized controlled trial
Study grouping: Parallel group

Participants

Baseline Characteristics
- Intervention 1
 - Age in years, mean (SD): 9.9 (1.3)
 - Male gender (%): 81.5
 - Proportion using ADHD medication (%): 0
- Control
 - Age in years, mean (SD): 9.8 (1.3)
 - Male gender (%): 84.6
 - Proportion using ADHD medication (%): 0
- Overall
 - Age in years, mean (SD): 9.8 (1.3)
 - Male gender (%): 83
 - Proportion using ADHD medication (%): 0

Included criteria: 1) diagnosis of ADHD of either combined or predominantly inattentive subtype 2) age between 7 and 12 years 3) access to a personal computer with an internet connection at home or in school

Excluded criteria: 1) being treated with stimulants, atomoxetine, neuroleptic or any other psychoactive drug 2) fulfilling criteria for diagnosis of clinical significant oppositional defiant disorder, autistic syndrome, Aspergers syndrome or depression 3) history of seizures during the past 2 years 4) IQ 80 5) motor or perceptual handicap that would prevent the usage of a computer program 6) educational level and socioeconomic situation that made it unlikely that the family would be able to follow the treatment procedure and study requirements 7) medical illness requiring immediate treatment

Pretreatment: No differences

Interventions

Intervention Characteristics
- Intervention 1
 - Description: computer program for training WM (medium total training time: 40 min./session), with increasing difficulty level
 - Length of intervention (weeks): 5
 - No. of sessions per week: Not reported
- Control
 - Description: computer program for training WM, remaining at low difficulty level.
 - Length of intervention (weeks): 5
 - No. of sessions per week: Not reported
Outcomes

<table>
<thead>
<tr>
<th>ADHD core symptom, parent rating, SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome type: ContinuousOutcome</td>
</tr>
<tr>
<td>Reporting: Fully reported</td>
</tr>
<tr>
<td>Scale: Conners scale (inattention)</td>
</tr>
<tr>
<td>Direction: Lower is better</td>
</tr>
<tr>
<td>Data value: Endpoint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADHD core symptom, teacher rating, SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome type: ContinuousOutcome</td>
</tr>
<tr>
<td>Reporting: Fully reported</td>
</tr>
<tr>
<td>Scale: Conners scale (inattention)</td>
</tr>
<tr>
<td>Direction: Lower is better</td>
</tr>
<tr>
<td>Data value: Endpoint</td>
</tr>
</tbody>
</table>

Identification

Sponsorship source: Drs. Forssberg and Klingberg and Ms Westerberg own stock in Cogmed. Ms. Olesen had a consultancy agreement with Cogmed.

Country: Sweden

Setting: Personal computer in home or school

Comments:

Authors name: Torkel Klingberg

Institution: Unit of Neuropediatrics, Department of Women and Children’s Health, Astrid Lindgren’s Children’s hospital

Email: torkel.klingberg@kbh.ki.se

Address: Unit of Neuropediatrics, Department of Women and Children’s Health, Astrid Lindgren’s Children’s Hospital, Q2.07, Karolinska Institute, 171 76 Stockholm, Sweden

Notes

Risk of bias table

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Comment: A randomized blinded list of numbers associated with the CDs containing the treatment or comparison program was sent out to each clinical center. Randomization was done with blocks of four</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Judgement Comment: The CDs were distributed by the testing psychologists to the children in the order they entered the study at each site. Thus the physician, psychologist, parent and child were all blind to child status group until after the follow-up assessment.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Judgement Comment: The CDs were distributed by the testing psychologists to the children in the order they entered the study at each site. Thus the physician, psychologist, parent and child were all blind to child status group until after the follow-up assessment.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Judgement Comment: The CDs were distributed by the testing psychologists to the children in the order they entered the study at each site. Thus the physician, psychologist, parent and child were all blind to child status group until after the follow-up assessment.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>High risk</td>
<td>Comment: Only children from the intervention group withdrew: two because of computer problems and one because of social problems.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>High risk</td>
<td>Judgement Comment: No reference to protocol. Do not refer to non-compliers analysis in statistical methods. Method description on collecting information on adverse events was not described.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>Judgement Comment: Conflict of interest described. Funding source not described.</td>
</tr>
</tbody>
</table>

Rabiner 2010

Methods

Study design: Randomized controlled trial

Study grouping: Parallel group

Participants

Baseline Characteristics

Intervention 1
- Age in years, mean (SD): not reported
- Male gender (%): not reported
- Proportion using ADHD medication (%): not reported

Intervention 2
- Age in years, mean (SD): not reported
- Male gender (%): not reported
- Proportion using ADHD medication (%): not reported

Control
- Age in years, mean (SD): not reported
- Male gender (%): not reported
- Proportion using ADHD medication (%): not reported

Overall
- Age in years, mean (SD): not reported
- Male gender (%): not reported
- Proportion using ADHD medication (%): 7%

Included criteria: All whom had been identified by their teacher as having attention difficulties. Children scoring at least
1.0 standard deviations above the sample mean (measured on the Inattentive Scale of the CTRS-R:L) were potentially eligible for the study. For students whom second language were English, they included if their non-verbal IQ score exceeded 70.

Excluded criteria: Students were excluded if their T-score on the Inattentive Scale was below 60. Student with full scale IQ scores below 70 were excluded due to the likelihood of them becoming frustrated by the training.

Pretreatment: Nothing mentioned

Interventions

Intervention Characteristics

Intervention 1
- **Description:** Computerized Attention Training (CAT) - session lasted 75 min with 50-60 min on the computer.
- **Length of intervention (weeks):** 14
- **No. of sessions per week:** 2

Intervention 2
- **Description:** Computer Assisted Instruction (CAI) - session lasted 75 min with 50-60 min on the computer.
- **Length of intervention (weeks):** 14
- **No. of sessions per week:** 2

Control
- **Description:** Waitlist
- **Length of intervention (weeks):** none
- **No. of sessions per week:** none

Outcomes

ADHD core symptom, teacher rating, OR

- **Outcome type:** DichotomousOutcome
- **Reporting:** Fully reported
- **Scale:** Conners scale (inattention)
- **Data value:** Change from baseline
- **Notes:** Odds ratio were calculated for each significant effect to provide an estimate of magnitude of change.

Identification

Sponsorship source: This study was supported by Grant R305H050036 from the department of education

Country: USA

Setting: 5 public schools in the southeastern USA

Comments:
- **Authors name:** David L. Rabiner
- **Institution:** Center for Child and Family Policy/Dept. of Psychology Neuroscience, Duke University, Durham, USA
- **Email:** drabiner@duke.edu
- **Address:** Duke university, Durham, NC 27708, USA

Notes

- **Risk of bias table**

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>High risk</td>
<td>Randomization was done within school to ensure a balanced representation of students</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>High risk</td>
<td>Judgement Comment: Randomization was done within school to ensure a balanced representation of students</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>Judgement Comment: Teachers were initially blind to students’ condition, but some undoubtedly became aware of who received intervention.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>High risk</td>
<td>Judgement Comment: Randomization was done within school to ensure a balanced representation of students. Parents of students randomized to the control condition were offered the opportunity to have their child receive the intervention of their choice the following year. Teachers were initially blind to students condition but some undoubtedly became aware of who received intervention.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>Comment: Twenty students were excluded from further participation because their T-score on the DSM-IV inattentive scale was below 60. Analysis accounted for missing data (assuming missing at random)</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>High risk</td>
<td>Judgement Comment: No reference to protocol.cannot find the statistical method description (analysis of missing data described in result section).</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>Judgement Comment: The role of the funding source has not been stated. Potential conflict of interest has not been described. The study seems otherwise free of other sources of bias.</td>
</tr>
</tbody>
</table>

Shalev 2007

Methods

- **Study design:** Randomized controlled trial
- **Study grouping:** Parallel group

Participants

Baseline Characteristics

Intervention 1
- **Age in years, mean (SD):** 9.1 (6-13)
- **Male gender (%):** 85
- **Proportion using ADHD medication (%):** not reported

Control
- **Age in years, mean (SD):** 9.2 (6-13)
- **Male gender (%):** 81
Proportion using ADHD medication (%): not reported
Overall
- Age in years, mean (SD): not reported
- Male gender (%): 83
- Proportion using ADHD medication (%): not reported

Included criteria: Participants were diagnosed by a qualified psychiatrist, neurologist or psychologist according to DSM-IV criteria. Written parental consent was a prerequisite for participation in the study.

Excluded criteria: Not reported

Pretreatment: There was no significant difference between ages and intelligence between the two groups

Interventions

Intervention Characteristics

Intervention 1
- **Description:** The computerized progressive attentional training (CPAT) program is composed of four sets of structured tasks that uniquely activate sustained attention, selective attention, orienting of attention, and executive attention. Performance was driven by tight schedules of feedback and participants automatically advanced in ordered levels of difficulty contingent upon performance.
- Length of intervention (weeks): 8
- No. of sessions per week: 2

Control
- **Description:** The control group consisted of children with ADHD who participated in sessions of the same frequency, length, and format except that instead of performing the training tasks they played various computer games and were involved in various paper and pencil activities during the session. These computer games contained inherent scoring and feedback mechanisms. These games also included multiple levels of difficulty.
- Length of intervention (weeks): 8
- No. of sessions per week: 2

Outcomes

ADHD core symptom, parent rating SEM
- **Outcome type:** Continuous Outcome
- **Reporting:** Partially reported
- **Scale:** Conners scale (inattention)
- **Direction:** Lower is better
- **Data value:** Endpoint
- **Notes:** Data extracted from graph.

Identification

Sponsorship source:
- **Country:** UK

Setting:

Comments:
- **Authors name:** Lilach Shalev
- **Institution:** Behavioral brain sciences center, school of psychology
- **Email:** 1.shalev.1@bham.ac.uk
- **Address:** University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK

Notes

Risk of bias table

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>High risk</td>
<td>Comment: The participants were randomly assigned to either the experimental group or the control group. Not clear how this is done.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>High risk</td>
<td>Judgement Comment: Insufficient information on allocation concealment</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Unclear risk</td>
<td>Judgement Comment: Participants were randomly assigned to either the experimental group or the control group, and the group identity was known neither to participants nor to their parents. Unclear if personnel was blinded.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Judgement Comment: Insufficient information of the blinding of outcome assessors</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Unclear risk</td>
<td>Judgement Comment: No reference to study protocol. Statistical methods incorporated in results section.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>High risk</td>
<td>Judgement Comment: Appears to be free of other sources of bias. No reference to conflict of interest and funding source.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td></td>
</tr>
</tbody>
</table>

Steiner 2011

Methods
- **Study design:** Randomized controlled trial
- **Study grouping:** Parallel group

Participants
- **Baseline Characteristics**
 - **Intervention 1**
 - Age in years, mean (SD): not reported
 - Male gender (%): not reported
 - Proportion using ADHD medication (%): not reported
 - **Intervention 2**
Included criteria: Children were eligible if they had a diagnosis of ADHD confirmed by their psychiatrists and sufficient English ability to complete assessments and intervention protocols. Both boys and girls were eligible, regardless of their subtype of ADHD or medication use.

Excluded criteria: Children were excluded if they had a coexisting diagnosis of conduct disorder, pervasive developmental disorder or other serious mental illness (e.g., psychosis).

Pre-treatment: There were no statistically significant pre-intervention differences in demographic characteristics across the three groups.

Interventions

<table>
<thead>
<tr>
<th>Intervention Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention 1</td>
</tr>
<tr>
<td>Description: attention training through neurofeedback (NF) - 45 min sessions</td>
</tr>
<tr>
<td>Length of intervention (weeks): 16</td>
</tr>
<tr>
<td>No. of sessions per week: 2</td>
</tr>
<tr>
<td>Intervention 2</td>
</tr>
<tr>
<td>Description: attention training through a standard computer format (SCF) - 45 min sessions</td>
</tr>
<tr>
<td>Length of intervention (weeks): 16</td>
</tr>
<tr>
<td>No. of sessions per week: 2</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Description: Waitlist</td>
</tr>
<tr>
<td>Length of intervention (weeks): 16</td>
</tr>
<tr>
<td>No. of sessions per week: none</td>
</tr>
</tbody>
</table>

Outcomes

<table>
<thead>
<tr>
<th>ADHD core symptom, parent rating, SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome type: ContinuousOutcome</td>
</tr>
<tr>
<td>Reporting: Fully reported</td>
</tr>
<tr>
<td>Scale: Conners scale (inattention)</td>
</tr>
<tr>
<td>Direction: Lower is better</td>
</tr>
<tr>
<td>Data value: Endpoint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADHD core symptom, teacher rating, SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome type: ContinuousOutcome</td>
</tr>
<tr>
<td>Reporting: Fully reported</td>
</tr>
<tr>
<td>Scale: Conners scale (inattention)</td>
</tr>
<tr>
<td>Direction: Lower is better</td>
</tr>
<tr>
<td>Data value: Endpoint</td>
</tr>
</tbody>
</table>

Identification

<table>
<thead>
<tr>
<th>Sponsorship source: The study was supported by grants from the Deborah Munroe Noonan Memorial Research Fund and the Newton Schools Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country: USA</td>
</tr>
<tr>
<td>Setting: Hospital/Middle school</td>
</tr>
<tr>
<td>Authors name: Naomi J. Steiner</td>
</tr>
<tr>
<td>Institution: Floating Hospital for Children, Boston, MA, USA</td>
</tr>
<tr>
<td>Email: nsteiner@tuftsmedicalcenter.org</td>
</tr>
<tr>
<td>Address: Floating Hospital for Children 800, Washington street #334, Boston MA 02111, USA</td>
</tr>
</tbody>
</table>

Notes

Risk of bias table

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Using a computer-generated random digit generator the remaining 41 participants were randomly assigned to one of the two interventions or the waiting list</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>High risk</td>
<td>Judgement Comment: Insufficient information on allocation concealment</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>Judgement Comment: Insufficient information on blinding</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>High risk</td>
<td>Judgement Comment: Insufficient information on blinding of outcome assessors.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>High risk</td>
<td>Comment: imbalance in numbers and reason for missing data across intervention groups (figure 1)</td>
</tr>
</tbody>
</table>
Selective reporting (reporting bias) | Unclear risk | Judgement Comment: There were 3 participants in the neurofeedback group and 2 in the SCF group who where excluded. Not explained why. No reference to study protocol, but include expected outcomes.

Other bias | Low risk | Judgement Comment: No reporting on conflict of interest or role of funding source, but appears free of other sources of bias.

Summary of findings tables

Additional tables

Data and analyses

1 PC training vs. Control

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 ADHD kernesymtomer, forældrebedømt, mean SD</td>
<td>10</td>
<td>439</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.49 [-1.04, 0.07]</td>
</tr>
<tr>
<td>1.1.1 EoT</td>
<td>10</td>
<td>439</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.49 [-1.04, 0.07]</td>
</tr>
<tr>
<td>1.2 ADHD kernesymtomer, lærerbedømt, mean SD</td>
<td>6</td>
<td>288</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>0.04 [-0.19, 0.28]</td>
</tr>
<tr>
<td>1.2.1 EoT</td>
<td>6</td>
<td>288</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>0.04 [-0.19, 0.28]</td>
</tr>
<tr>
<td>1.3 ADHD kernesymtomer, lærerbedømt, event</td>
<td>1</td>
<td>81</td>
<td>Risk Ratio (IV, Random, 95% CI)</td>
<td>2.90 [1.13, 7.44]</td>
</tr>
<tr>
<td>1.3.1 EoT</td>
<td>1</td>
<td>81</td>
<td>Risk Ratio (IV, Random, 95% CI)</td>
<td>2.90 [1.13, 7.44]</td>
</tr>
<tr>
<td>1.4 Livskvalitet (børnebedømt) 3 months FU</td>
<td>1</td>
<td>61</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>-0.60 [-8.26, 7.06]</td>
</tr>
<tr>
<td>1.4.1 3 months FU</td>
<td>1</td>
<td>61</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>-0.60 [-8.26, 7.06]</td>
</tr>
<tr>
<td>1.5 Livskvalitet (Forældre bedømt) 3 months FU</td>
<td>1</td>
<td>62</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>10.40 [4.04, 16.76]</td>
</tr>
<tr>
<td>1.6 Adfærdsforstyrrelser, forældrebedømt, mean SD</td>
<td>2</td>
<td>122</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.17 [-0.52, 0.19]</td>
</tr>
<tr>
<td>1.6.1 EoT</td>
<td>2</td>
<td>122</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.17 [-0.52, 0.19]</td>
</tr>
<tr>
<td>1.7 Adfærdsforstyrrelser, lærerbedømt, mean SD</td>
<td>2</td>
<td>122</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.05 [-0.44, 0.35]</td>
</tr>
<tr>
<td>1.7.1 EoT</td>
<td>2</td>
<td>122</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.05 [-0.44, 0.35]</td>
</tr>
</tbody>
</table>

Figures

Figure 1
Risk of bias summary: review authors’ judgements about each risk of bias item for each included study.

Figure 2 (Analysis 1.1)

Figure 3 (Analysis 1.2)
Forest plot of comparison: 1 PC training vs. Control, outcome: 1.2 ADHD kernesymptomer, lærerbedømt, mean SD.

Figure 4 (Analysis 1.3)

Forest plot of comparison: 1 PC training vs. Control, outcome: 1.3 ADHD kernesymptomer, event.

Figure 5 (Analysis 1.4)

Forest plot of comparison: 1 PC training vs. Control, outcome: 1.4 Livskvalitet (børnebedømt) 3 months FU.

Figure 6 (Analysis 1.6)
Table 1 (Analysis 1.7)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>PC Training</th>
<th>Control</th>
<th>Std. Mean Difference Mean, Random, 95% CI</th>
<th>Std. Mean Difference Mean, Random, 95% CI</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Gogins 2016</td>
<td>-0.11</td>
<td>0.62</td>
<td>31</td>
<td>0.11</td>
<td>0.62</td>
</tr>
<tr>
<td>Dowe 2015</td>
<td>5.4</td>
<td>5.9</td>
<td>31</td>
<td>5.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>62</td>
<td>60</td>
<td>100.0%</td>
<td>-0.05 [-0.44, 0.35]</td>
<td>(D)</td>
</tr>
</tbody>
</table>

Forest plot of comparison: 1 PC training vs. Control, outcome: 1.5 Adfærdsforstyrrelser, lærerbedømt, mean SD.

Figure 7 (Analysis 1.7)

Figure 8 (Analysis 1.5)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>PC Training</th>
<th>Control</th>
<th>Mean Difference Mean, Fixed, 95% CI</th>
<th>Mean Difference Mean, Fixed, 95% CI</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Dowe 2015</td>
<td>22.8</td>
<td>5.1</td>
<td>31</td>
<td>22.2</td>
<td>5.4</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>31</td>
<td>31</td>
<td>100.0%</td>
<td>10.40 [4.34, 16.76]</td>
<td>(D)</td>
</tr>
</tbody>
</table>

Risk of bias legend:
- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Forest plot of comparison: 1 PC training vs. Control, outcome: 1.6 Adfærdsforstyrrelser, forældrebedømt, mean SD.

Figure 7 (Analysis 1.7)

Forest plot of comparison: 1 PC training vs. Control, outcome: 1.7 Livskvalitet (Forældre bedømt) 3 months FU.